Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172591, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663597

RESUMO

With the issue of ozone (O3) pollution having increasingly gained visibility and prominence in China, the Chinese government explored various policies to mitigate O3 pollution. In some provinces and cities, diurnal regulations of O3 precursor were implemented, such as shifting O3 precursor emission processes to nighttime and offering preferential refueling at night. However, the effectiveness of these policies remains unverified, and their impact on the O3 generation process requires further elucidation. In this study, we utilized a regional climate and air quality model (WRF-Chem, v4.5) to test three scenarios aimed at exploring the impact of diurnal industry emission variation of O3 precursors on O3 formation. Significant O3 variations were observed mainly in urban areas. Shifting volatile organic compounds (VOCs) to nighttime have slight decreased daytime O3 levels while moving nitrogen oxides (NOx) to nighttime elevates O3 levels. Simultaneously moving both to nighttime showed combined effects. Process analysis indicates that the diurnal variation in O3 was mainly attributed to chemical process and vertical mixing in urban areas, while advection becomes more important in non-urban areas, contributing to the changes in O3 and O3 precursors levels through regional transportation. Further photochemical analysis reveals that the O3 photochemical production in urban areas was affected by reduced daytime O3 precursors emissions. Specifically, decreasing VOCs lowered the daytime O3 production by reducing the ROx radicals (ROx = HO + HO˙2 + RO˙2), whereas decreasing NOx promoted the daytime O3 production by weakening ROx radical loss. Our results demonstrate that diurnal regulation of O3 precursors will disrupt the ROx radical and O3 formation in local areas, resulting in a change in O3 concentration and atmospheric oxidation capacity, which should be considered in formulating new relevant policies.

2.
Environ Pollut ; 331(Pt 2): 121886, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236582

RESUMO

In December 2019, the New Crown Pneumonia (the COVID-19) outbroke around the globe, and China imposed a nationwide lockdown starting as early as January 23, 2020. This decision has significantly impacted China's air quality, especially the sharp decrease in PM2.5 (aerodynamic equivalent diameter of particulate matter less than or equal to 2.5 µm) pollution. Hunan Province is located in the central and eastern part of China, with a "horseshoe basin" topography. The reduction rate of PM2.5 concentrations in Hunan province during the COVID-19 (24.8%) was significantly higher than the national average (20.3%). Through the analysis of the changing character and pollution sources of haze pollution events in Hunan Province, more scientific countermeasures can be provided for the government. We use the Weather Research and Forecasting with Chemistry (WRF-Chem, V4.0) model to predict and simulate the PM2.5 concentrations under seven scenarios before the lockdown (2020.1.1-2020.1.22) and during the lockdown (2020.1.23-2020.2.14). Then, the PM2.5 concentrations under different conditions is compared to differentiate the contribution of meteorological conditions and local human activities to PM2.5 pollution. The results indicate the most important cause of PM2.5 pollution reduction is anthropogenic emissions from the residential sector, followed by the industrial sector, while the influence of meteorological factors contribute only 0.5% to PM2.5. The explanation is that emission reductions from the residential sector contribute the most to the reduction of seven primary contaminants. Finally, we trace the source and transport path of the air mass in Hunan Province through the Concentration Weight Trajectory Analysis (CWT). We found that the external input of PM2.5 in Hunan Province is mainly from the air mass transported from the northeast, accounting for 28.6%-30.0%. To improve future air quality, there is an urgent need to burn clean energy, improve the industrial structure, rationalize energy use, and strengthen cross-regional air pollution synergy control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Controle de Doenças Transmissíveis , Poluição do Ar/análise , Material Particulado/análise , China/epidemiologia
3.
Environ Pollut ; 319: 120928, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565915

RESUMO

Toughest-ever clean air actions in China have been implemented nationwide to improve air quality. However, it was unexpected that from 2014 to 2018, the observed wintertime PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) concentrations showed an insignificant decrease in Henan Province (HNP), a region in the west of the North China Plain. Emission controls seem to have failed to improve winter air quality in HNP, which has caused great confusion in formulating the next air improvement strategy. We employed a deweathering technique to decouple the impact of meteorological conditions. The results showed that the deweathered PM2.5 trend was -3.3%/yr in winter from 2014 to 2018, which had a larger decrease than the observed concentrations (-0.9%/yr), demonstrating that emission reduction was effective at improving air quality. However, compared with the other two megacity clusters, Beijing-Tianjin-Hebei (BTH) (-8.4%/yr) and Yangtze River Delta (YRD) (-7.4%/yr), the deweathered decreasing trend of PM2.5 for HNP remained slow. The underlying mechanism driving the changes in PM2.5 and its chemical components was further explored, using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Model simulations indicated that nitrate dominated the increase of PM2.5 components in HNP and the proportions of nitrate to total PM2.5 increased from 22.4% in January 2015 to 39.7% in January 2019. There are two primary reasons for this phenomenon. One is the limited control of nitrogen oxide emissions, which facilitates the conversion of nitric acid to particulate nitrate by ammonia. The other is unfavourable meteorological conditions, particularly increasing humidity, further enhancing nitrate formation through multiphase reactions. This study highly emphasizes the importance of reducing nitrogen oxide emissions owing to their impact on the formation of particulate nitrate in China, especially in the HNP region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Nitratos , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise , Pequim , China , Poeira , Estações do Ano , Carvão Mineral
4.
J Hazard Mater ; 420: 126552, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329073

RESUMO

It is critical to developing low-cost and efficient catalysts to activate peroxymonosulfate for the degradation of organic contaminants, whereas it remains challenging. In the study, a recycle method to synthesize efficient heterogeneous catalysts was developed by exploiting the anode electrode of spent lithium-ion batteries as the raw material based on a one-step calcination process. The recycled anode material (AM) composed of copper oxide and graphite carbon was capable of efficiently activating peroxymonosulfate (PMS) to degrade a wide range of organic contaminants. In addition, an investigation was conducted on the effect of reactive parameters (e.g., catalyst dose, PMS dose, RhB concentration, and coexisting matters). Besides, the AM/PMS process could exhibit high effectiveness at a broad pH range (3-10) and in a real water matrix. The redox cycle of Cu(II)/Cu(I) in the AM acted as the predominated force to effectively facilitate the PMS activation for the formation of oxygen species, in which the SO4·- and 1O2 exerted a primary effect. Moreover, the non-radical pathway of electron transfer between RhB and PMS facilitated the removal of RhB. In this study, a reclamation approach was developed for the recycling of spent LIBs anodes, and insights into the development of catalysts in SR-AOPs were gained.

5.
J Hazard Mater ; 418: 126311, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118543

RESUMO

Carbothermal reduction is a convenient and cost-effective method to produce biochar (BC) supported iron-based nano-particles (INP) for oxyanion contaminants removal. However, considering the possible desorption of the target oxyanion during change of the surrounding environment, the detailed removal mechanisms remain unclear and the long-term efficiency of different INPs cannot be predicted. In this study, different BC/Fe composites were synthesized by controlling the pyrolysis temperatures (500-800 °C). BC/Fe3O4 composite synthesized at 500 °C (BC/Fe500) possessed the strongest surface acidity thus with the best SeO42- removal performance, and BC/Fe0/Fe3O4 composite synthesized at 650 °C (BC/Fe650) possessed the best reducing ability toward SeO42-. Through the co-removal experiments (SeO42- and common competing oxyanions co-existed) and the investigation of Se stability loaded on BC/Fe composites, the removal of SeO42- by BC/Fe500 through highly reversible adsorption could not achieve long-term immobilization of Se, making it an appropriate adsorbent for pre-treatment only, while the efficient reduction of SeO42- to Se0 by BC/Fe650 could largely improve its long-term stability. This study supplies a possible strategy for Se immobilization against common competing oxyanions.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 779: 146283, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33752001

RESUMO

Spatio-temporal distributions of air pollution and population are two important factors influencing the patterns of mortality and diseases. Past studies have quantified the adverse effects of long-term exposure to air pollution. However, the dynamic changes of air pollution levels and population mobility within a day are rarely taken into consideration, especially in metropolitan areas. In this study, we use the high-resolution PM2.5 data from the micro-air monitoring stations, and hourly population mobility simulated by the heatmap based on Location Based Service (LBS) big data to evaluate the hourly active PM2.5 exposure in a typical Chinese metropolis. The dynamic "active population exposure" is compared spatiotemporally with the static "census population exposure" based on census data. The results show that over 12 h on both study periods, 45.83% of suburbs' population-weighted exposure (PWE) is underestimated, while 100% of rural PWE and more than 34.78% of downtown's PWE are overestimated, with the relative difference reaching from -11 µg/m3 to 7 µg/m3. More notably, the total PWE of the active population at morning peak hours on weekdays is worse than previously realized, about 12.41% of people are exposed to PM2.5 over 60 µg/m3, about twice as much as that in census scenario. The commuters who live in the suburbs and work in downtown may suffer more from PM2.5 exposure and uneven environmental resource distribution. This study proposes a new approach of calculating population exposure which can also be extended to quantify other environmental issues and related health burdens.

7.
Environ Pollut ; 263(Pt B): 114388, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222665

RESUMO

In China, ambient fine particulate matter (PM2.5) causes a large health burden and raises specific concerns for policymakers. However, assessments of the health effects associated with air pollution from industrial land layouts remain inadequate. This study established a comprehensive assessment framework to quantify the health and economic impacts of PM2.5 exposure at different industrial geographical locations. This framework aims to optimize the spatial distribution of industrial emissions to achieve the lowest public health costs in Changsha, a representative industrial city in China. Health effects were estimated by applying the integrated exposure-response model and a long-range pollution dispersion model (CALPUFF). The value of statistical life (VSL) was used to monetize health outcomes. It was found that implementing an optimal industrial land layout can yield considerable social and financial benefits. Compared with the current industrial space layout, in 2030, the averted contribution by Changsha's industrial sector to PM2.5-related mortality and corresponding economic losses will be 60.8% and 0.69 billion US dollars (USD), respectively. The results of optimization analyses highlighted that population density and emission location are significant factors affecting the health burden. This method can identify the optimal geographical allocation of industrial land with minimal expected health and economic burden. These results will also provide policymakers with a measurable assessment of health risks related to industrial spatial planning and the associated health costs to enhance the effectiveness of efforts to improve air quality.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Material Particulado/análise , Saúde Pública
8.
Bioresour Technol ; 290: 121765, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31301570

RESUMO

A novel hydrochar adsorbent derived from sawdust (SAHC) was prepared for highly efficient simultaneous removal of benzotriazole (BTA) and Cu(II) from aqueous solution. The prepared adsorbent was characterized by several methods such as SEM, FTIR, and XPS. Batch adsorption experiments showed that the maximum adsorption capacity of SAHC for BTA and Cu(II) was 159.91 and 298.86 mg/g, respectively. Additionally, the study of competitive adsorption showed that the adsorption of Cu(II) was barely affected by the existence of BTA while the BTA adsorption was significantly improved with the coexistence of Cu(II). The study of adsorption mechanism found that Cu(II) could chelate with BTA to form complex, and the complexing-bridging interaction improved BTA adsorption. SAHC exhibited high adsorption ability after six adsorption cycles, which indicated excellent stability and regeneration performance of SAHC. All the results suggested that SAHC could be a promising adsorbent for simultaneous removal of BTA and Cu(II) from wastewater.


Assuntos
Cobre , Poluentes Químicos da Água , Adsorção , Ácidos Sulfônicos , Triazóis
9.
Environ Pollut ; 251: 257-263, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31082610

RESUMO

Biological tests with plant seeds have been adopted in many studies to investigate the phytotoxicity of pollutants to facilitate the control of risks and remain to be optimized. In this work, the experiment with a small sample size (Experiment 1) and the experiment with a large one (Experiment 2) were designed to study the effect of tetracycline (TC) on Chinese cabbage (Brassica rapa L.) at seed germination and radicle elongation stages. At the former stage, germination number data were obtained to analyze the germination energy (GE) and to judge the probability of the number of germinated seeds (Pn) by the binomial distribution model in Experiment 1. While germination time-to-number data were obtained to analyze the mean time to germination (MGT), the estimate of mean time to germination (EMGT) by survival analysis method, the time to germination for 50% of total seeds (T50) and the germination rate (GR) besides GE in Experiment 2. At the latter stage, the data of radicle length (RL) were obtained in all the experiments and the influence from the former stage on this stage was excluded in Experiment 2 but not in Experiment 1. Results showed that TC had universal adverse effects on the latter stage but not on the former stage in the experiments. Considering the availability of germination data for statistical analysis and the robustness of RL data, the methods adopted in Experiment 2 were more feasible than those in Experiment 1. In addition, Chinese cabbage seeds with medium size have the character of rapid germination compared with the commonly used crop species and can be used to shorten the experimental cycle to study the responses of seeds to pollutants to evaluate the phytotoxicity. We introduced survival analysis method to analyze the germination time-to-number data obtained in seed germination test to evaluate the phytotoxicity of tetracycline.


Assuntos
Antibacterianos/toxicidade , Germinação/efeitos dos fármacos , Tetraciclina/toxicidade , Brassica/efeitos dos fármacos , Sementes/efeitos dos fármacos
10.
Environ Int ; 116: 92-100, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660613

RESUMO

Both climate change and intensive human activities are thought to have contributed to the impairment of atmospheric visibility in Beijing. But the detailed processes involved and relative roles of human activities and climate change have not been quantified. Optical extinction of aerosols, the inverse of meteorological visibility is especially sensitive to fine particles <1.0 µm. These submicron particles are considered more hazardous than larger ones in terms of cardiovascular and respiratory diseases. Here we used the aerosol optical extinction (inverse of visibility) as the indicator of submicron particles pollution to estimate its inter-annual variability from 1980 to 2015. Our results indicated that optical extinction experienced two different periods: a weakly increasing stage (1980-2005) and a rapidly increasing stage (2005-2015). We attributed the variations of optical extinction to the joint effects of human activities and climate change. Over the past 36 years, human activities played a leading role in the increase of optical extinction, with a positive contribution of 0.077 km-1/10 y. While under the effects of climate change, optical extinction firstly decreased by 0.035 km-1/10 y until 2005 and then increased by 0.087 km-1/10 y. Detailed analysis revealed that the abrupt change (around 2005) of optical extinction resulted from the trend reversals of climate change. We found since 2005 the decreasing trend by 0.58 m·s-1/10 y in wind speed, the growing trend at 8.69%/10 y in relative humidity and the declining trend by 2.72 hPa/10 y in atmospheric pressure have caused the rapid increase of optical extinction. In brief, the higher load of fine particles <1.0 µm in Beijing in recent decades could be associated with both human activities and climate change. Particularly after 2005, the adverse climate change aggravated the situation of submicron particles pollution.


Assuntos
Poluição do Ar , Mudança Climática , Atividades Humanas , Pequim , Humanos , Smog
11.
Orthop Surg ; 1(2): 144-52, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-22009832

RESUMO

OBJECTIVE: Curcumin, an active ingredient derived from the rhizome of the plant, Curcuma longa, has antioxidant, anti-inflammatory and anti-cancer activities. The aims of this study were to examine whether curcumin can induce apoptosis in an osteosarcoma cell line. METHODS: Curcumin-induced apoptosis in human osteosarcoma U2OS cells was investigated using morphological analysis, marked nuclear condensation and fragmentation of chromatin, which were observed by Hoechst 33258 staining and DNA ladder formation. The U2OS cells were treated with or without curcumin. Cell viability was assessed by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium (MTT) method. Cell-cycle, apoptosis and apoptosis-related proteins in U2OS cells were evaluated by flow cytometry and western blotting. RESULTS: Curcumin showed growth inhibitory effects on U2OS cells in a dose-and time-dependent manner, inducing significant G1 arrest and apoptosis in U2OS cells. This curcumin-induced apoptosis in U2OS cells was accompanied by up-regulation of Bax, Bak, and p-Bad and down-regulation of Bcl-2, but no effect on the levels of Bcl-X(L) or Bad proteins was noted. Moreover, curcumin treatment resulted in a significant reduction of mitochondrial membrane potential and increase in the concentrations of mitochondrial cytochrome C and caspase-3. CONCLUSION: Multiple molecular pathways are involved in curcumin-induced apoptosis of human U2OS cells. These include pro-and anti-apoptotic Bcl-2 family proteins, mitochondrial membrane potential, mitochondrial cytochrome C and caspase-3.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Curcumina/farmacologia , Osteossarcoma/tratamento farmacológico , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/análise , Citometria de Fluxo , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...